Minggu, 25 April 2010

SIGNIFIKANSI HASIL PENELITIAN

Oleh : Tatang M. Amirin, 20 Maret 2010


Ada yang bertanya, apakah jika penelitian dilakukan terhadap populasi (seluruh “anggota populasi” diteliti, bukan studi sampling, penelitian terhadap sebagian anggota populasi) harus ada uji signifikansi. Pertanyaan itu muncul karena umumnya dalam buku-buku statistika dan metodologi penelitian uji signifikansi itu berkaitan dengan generalisasi hasil penelitian dari sampel ke populasinya (dari “statistik”–hasil penelitian dari sampel–ke paramaternya–keadaan populasinya).

STOP! Harus diulang dulu apa itu populasi dan sampel. Jika yang akan diteliti 100 orang murid, maka keseluruhan 100 orang murid itu disebut populasi. Tiap-tiap murid disebut anggota populasi. Jadi, populasi seratus murid itu beranggotakan 100 orang. Jika keseratus orang itu semuanya diteliti (jika diangketi, ya semuanya dikirimi angket), maka disebutlah penelitiannya sebagai studi populasi. Jika yang akan diteliti (diangketi) hanya sebagian saja dari 100 orang itu, maka yang diteliti atau disebari angket itu disebut sampel. Penelitiannya disebut studi sampling.

Hasil penelitian terhadap sampel (misalnya dari 100 orang siswa yang diteliti 25 orang saja sebagai sampel) disebut sebagai “statistik.” Keadaan sebenarnya populasinya disebut sebagai “paramater.” “Statistik” (“data” dari sampel) itu kemudian digeneralisasikan (diberlaku=-umumkan) kepada populasinya. Jadi, jika misalnya data dari 25 orang murid menunjukkan semuanya rajin, maka semua murid (100 orang itu) dianggap rajin semua. Ingat ceritera mencicipi sayur sepanci. Sayur sepanci itu dicicipi sesendok teh. Sayur sesendok teh itu kurang asin. Lalu, disimpulkan bahwa seluruh sayur sepanci itu kurang asin. Itu namanya generalisasi. Sampelo (25 orang murid, sayur sesendok teh) diteliti, datanya (“statistik”) dipakai untuk “menaksir” keadaan (parameter) populasinya (contohnya: ditaksir 100 murid rajin semua, ditaksir sayur sepanci kurang asin semua).

Kembalike pertanyaan semula. Pertanyaan itu sangat menarik dan menggelitik. Saya terpaksa harus buka-buka “literatur,” mengecek apakah memang itu hanya berkait dengan sampel dan populasinya, dalam hal ini berkait dengan menggeneralisasikan data dari sampel (statistik) ke populasinya (paramater). Nah, untuk menjawabnya, akan lebih baik jika dibahas apa sih sebenarnya makna signifikansi itu.

Tunggu. Rasanya para pembaca perlu ada apersepsi (pengetahuan awal) terlebih dahulu, perlu dibawa ke dasar-dasarnya dulu. Nah, berikut dipaparkan dasar-dasar pengetahuan dimaksud.

Jika seseorang melakukan penelitian korelasi (mengkorelasikan variabel independen X dengan variabel dependen Y) yang bersifat kuantitatif (mengukur, datanya berupa bilangan) dan datanya itu dianalisis dengan teknik analisis statistika, salah satu yang harus “dilihat” itu adalah apakah hasilnya signifikan pada taraf tertentu. Signifikan itu arti mudahnya –nanti dijelaskan lebih panjang lebar–meyakinkan bahwa benar atau tidak.

Taraf signifikansi itu lazim dinyatakan dengan tanda .05 (diindonesiakan jadi 0,05) atau .01 (diindonesiakan jadi 0,01) — yang sering diubah menjadi taraf kepercayaan 95% atau 99% (0,05 = 95%; 0,01 = 95%). Maksudnya apa, nanti dijelaskan.

Dalam buku-buku statistika tersedia daftar yang menunjukkan angka-angka (bilangan) tertentu pada taraf signifikansi tertentu. Angka-angka itu merupakan standar (patokan) untuk menentukan apakah hasil penelitian (data penelitian) signifikan atau tidak. Angka itu menunjukkan angka minimal yang harus dicapai oleh data dari penelitian agar disebut berkorelasi secara signifikan (meyakinkan).

Jika angka (hasil analisis komputer) yang didapat dari analisis statistik itu lebih besar dari angka standar pada taraf signifikansi .05 atau .01, maka dikatakanlah bahwa ada korelasi yang signifikan. Sebelum penjelasan lebih lanjut, dalam bahasa keseharian istilah itu dapat kita beri makna korelasi yang meyakinkan, tegasnya yakin benar-benar berkorelasi (berhubungan: bahwa X “mempengaruhi” Y).

Keyakinan yang sepenuh-penuhnya dalam bahasa keseharian lazim dibahasakan dengan “yakin 100%.” Jadi, kalau yakin 99% ya sudah sangat dekat dengan 100%, begitu pula 95%. Tapi kalau “50% yakin,” itu artinya masih ragu-ragu, antara yakin dan tidak yakin. Jika hanya 25% saja yakinnya, ya jadinya tidak yakin, gitu.

Nah, apa itu maksudnya? Mari kita bahas dengan meminjam uraian Creative Reserch Systems (CRS)–online.

Istilah signifikan (significant) itu dalam bahasa Inggris umum (sehari-hari) artinya penting. Dalam Statistika, signifikan itu artinya berkemungkinan atau berpeluang betul-betul benar (bukan karena secara kebetulan). Bahasa Inggerisnya “probably true (not due to chance).”

Apa pula itu? Begini. Ambil contoh murid-murid yang mengerjakan ujian cekpoin. Si Anu bisa menjawab benar seluruh soal. Si B bisa menjawab benar seluruh soal juga. Demikian pula Si C dan Si D. Pertanyaannya, apakah “kebenaran” menjawab soal (bisa menjawab soal dengan benar) itu karena benar-benar tahu jawaban yang benar, ataukah hanya secara kebetulan menjawab (memilih dari pilihan ganda) jawaban yang benar. Itu kira-kira yang dimaksud “berkemungkinan benar” (benar-benar menjawab dengan benar–karena tahu yang benar) dan secara kebetulan (kebetulan menjawab atau memilih jawaban yang benar). Soal cek poin kan bisa seperti itu!

Dalam penelitian pun, jawaban responden (yang ditanyai) itu bisa benar-benar (sungguh-sungguh) menjawab itu, bisa hanya kebetulan. Jelasnya asal menjawab, tetapi kebetulan pilihan jawaban yang “dihitami” justru yang benar.

Taraf signifikansi (significance levels) itu, menurut CRS, menunjukkan kepada kita seberapa mungkin itu terjadi karena kebetulan saja. Jelasnya begini. Bilangan yang ditunjukkan untuk taraf signifikansi itu 0,05 atau 0,01. Itu artinya ada kemungkinan sebanyak 0,05 = 5% (atau 0,01 = 1%) secara kebetulan menjawab begitu.

Taraf yang umum digunakan dalam penelitian, seperti telah disinggung di muka, yang menunjukkan hasil penelitian itu seberapa dapat dipercaya kebenarannya adalah .95 (indonesianya 0,95). Itu artinya bahwa hasil penelitian itu kebenarannya 95% bisa diyakini (dekat dengan bisa dipercaya 100%).

Dalam penulisan statistika sebenarnya tidak ada penulisan taraf signifikansi itu dengan angka .95 (atau 0,95)–Saya tuliskan dalam tanda kurung plus tulisan atau, sebab jika langsung dituliskan .95 (0,95) siapa tahu nanti ada yang membacanya menjadi .95 kali 0,95 (Hehehe)–Yang akan tertuliskan adalah bilangan .05 (atau 0,05). Bilangan tersebut, seperti telah disinggung di atas, mengandung arti bahwa dalam hasil penelitian itu terkandung kemungkinan ada 5%-nya yang tidak betul-betul benar, yaitu yang hanya karena kebetulan saja benar. Ini sebenarnya “pembalikan” dari kemungkinan benarnya 95%. Jelasnya: kemungkinan yang benar 95%, kemungkinan yang tidak benar 5%–dari 100% jawaban responden.

Untuk mendapatkan persentase kemungkinan hasil penelitian benar, kurangkan bilangan 1,0 dengan bilangan “taraf signifikansi” tersebut. Jadi, bilangan 0,05 (atau .05) akan menjadi 1,0 – 0,05 = 0,95. Jika membacanya dengan cara lain, bukan dengan “nol koma …”, maka akan berbunyi: satu dikurangi 5 per seratus = 95 per seratus, alias 95 per sen (sen = seratus). Maksudnya 95% hasil penelitian itu dapat diyakini benarnya.

Ini contoh hasil penelitian (dari CRS) yang mencoba mengetahui apakah ada perbedaan pembelian BBM jenis X menurut kota dan jenis kendaraan bermotor. Analisis menggunakan teknik chi square (baca “kay skwer” alias kay kuadrat).

significance table

Di bagian bawah, sejajar tulisan “Chi Square” ada bilangan 0.07 (indonesianya 0,07) dan 24.4 (indonesianya 24,4). Itu adalah bilangan hasil analisis statistika yang menunjukkan kay skwernya.

Di bawahnya ada bilangan .795 dan .001. Itu bilangan taraf signifikansinya. Maksudnya bilangan sebesar 0,07 itu hanya “signifikan” pada taraf signifikansi 0,795, dan bilangan 24,4 signifikan pada taraf signifikansi 0,01.

Lebih jelasnya, bilangan 0,07 sebagai hasil analisis data penelitian tentang perbedaan pembeli BBM X antara penduduk kota dan pinggiran kota itu kebenarannya (bahwa benar-benar ada perbedaan) yang ditunjukkan pada taraf 0,795 ( = 795/10 = 79,5/100 = 79,5%) itu hanya bisa diyakini sebesar 100% – 79,5% = 20,5% saja. Jadi, jauh sekali dari yakin 100% benar ada perbedaan.

Bilangan 24,4 hasil analisis tentang adanya perbedaan pembeli BBM X antar pemilik berbagai kendaraan (beda mobil, beda beli) berada pada taraf signifikansi .001 (atau 0,001). Itu berarti berada pada taraf kepercayaan 1,000 – 0,001 (= 1000/1000 – 1/1000 = 100% – 0,1%) = 99,9%. Artinya, bahwa adanya perbedaan pembelian BBM X di antara pemilik berbagai mobil itu 99,9% benar.

Nah, jadi jelaslah bahwa taraf signifikansi itu berkaitan dengan taraf “kemeyakinkanan” adanya korelasi (jika penelitian korelasi–misalnya antara motivasi kerja dan prestasi kerja) atau adanya perbedaan (jika perbandingan–misalnya perbandingan efektivitas teknik A berbanding teknik B, atau perbandingan “kesukaan membeli sesuatu” antara orang desa berbanding orang kota).

Tradisional (manual) uji signifikansi itu dilakukan dengan cara membandingkan bilangan yang diperoleh dari analisis data hasil penelitian (misal 0,07) dengan bilangan standar pada taraf signifikansi tertentu (misal pada taraf signifikansi 0,05 bilangannya 12,08). Bilangan 0,07 lebih kecil daripada 12,08 (lazim dituliskan 0,07 <>

Tampak dengan demikian bahwa uji signifikansi itu yang pokok bukan soal generalisasi hasil penelitian yang dilakukan terhadap sampel kepada populasinya, melainkan soal “kemeyakinkanan kebenaran” hasil penelitian (yakin ada korelasi atau tidak, yakin ada perbedaan atau tidak).

Selain taraf signifikansi .05 (atau 0,05), seperti telah disebutkan di muka, lazim pula digunakan taraf signifikansi .01 (atau 0,01). Akan tetapi dalam penelitian sosial yang disepakati (ingat, hanya berupa kesepakatan para ahli) taraf signifikansi adalah taraf .05 (atau .05), alias taraf kepercayaannya 95% (yakin 95% benar; yang 5% diasumsikan secara kebetulan saja benar).

2 komentar: